Local polynomial estimation of regression operators from functional data with correlated errors - IPS
Article Dans Une Revue Journal of Multivariate Analysis Année : 2019

Local polynomial estimation of regression operators from functional data with correlated errors

Résumé

This article considers the problem of nonparametric estimation of the regression operator $r$ in a functional regression model $Y=r(x)+\varepsilon$ with a scalar response $Y$, a functional explanatory variable $x$, and a second order stationary error process $\varepsilon$. We construct a local polynomial estimator of $r$ together with its Fréchet derivatives from functional data with correlated errors. The convergence in mean squared error of the constructed estimator is studied for both short and long range dependent error processes. Simulation studies on the performance of the proposed estimator are conducted, and applications to independent data and El Niño time series data are given.
Fichier principal
Vignette du fichier
S0047259X17306292.pdf (400.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01927109 , version 1 (21-10-2021)

Licence

Identifiants

Citer

Karim Benhenni, Ali Hajj Hassan, Yingcai Su. Local polynomial estimation of regression operators from functional data with correlated errors. Journal of Multivariate Analysis, 2019, 170, pp.80-94. ⟨10.1016/j.jmva.2018.10.008⟩. ⟨hal-01927109⟩
140 Consultations
225 Téléchargements

Altmetric

Partager

More