Communication Dans Un Congrès Année : 2025

A Deep Learning Approach to Minimize Retrieval Time in Shuttle-Based Storage Systems

Résumé

Improvement of picking performances in automated warehouse is influenced by the assignment of articles to storage locations. This problem is known as the Storage Location Assignment Problem (SLAP). In this paper, we present a deep learning method to assign articles to storage locations inside a shuttles-based storage and retrieval system (SBS/RS). We introduce the architecture of our a LSTM-based model and the public dataset used. Finally, we compare the retrieval time of articles provided by our model against other allocation methods.
Fichier principal
Vignette du fichier
ICAART_2025_Knapp.pdf (560) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04931264 , version 1 (05-02-2025)

Identifiants

  • HAL Id : hal-04931264 , version 1

Citer

Paul Courtin, Jean-Baptiste Fasquel, Mehdi Lhommeau, Axel Grimault. A Deep Learning Approach to Minimize Retrieval Time in Shuttle-Based Storage Systems. 17th International Conference on Agents and Artificial Intelligence - ICAART 2025, SCITEVENTS, Feb 2025, Porto, Portugal. pp.1040-1047. ⟨hal-04931264⟩
0 Consultations
0 Téléchargements

Partager

More