On the set of bad primes in the study of Casas-Alvero Conjecture - Laboratoire Angevin de Recherche en Mathématiques
Pré-Publication, Document De Travail Année : 2023

On the set of bad primes in the study of Casas-Alvero Conjecture

Résumé

The Casas–Alvero conjecture predicts that every univariate polynomial over a field of characteristic zero having a common factor with each of its derivatives H_i (f ) is a power of a linear polynomial. One approach to proving the conjecture is to first prove it for polynomials of some small degree d, compile a list of bad primes for that degree (namely, those primes p for which the conjecture fails in degree d and characteristic p) and then deduce the conjecture for all degrees of the form d_pℓ , ℓ ∈ N, where p is a good prime for d. In this paper we calculate certain distinguished monomials appearing in the resultant R(f, H_i (f )). As a corollary, we obtain a (non-exhaustive) list of bad primes for every degree d ∈ N \ {0}.
Fichier principal
Vignette du fichier
casas-badprimes.pdf (279.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04158876 , version 1 (11-07-2023)
hal-04158876 , version 2 (21-08-2023)
hal-04158876 , version 3 (26-11-2024)

Identifiants

Citer

Daniel Schaub, Mark Spivakovsky. On the set of bad primes in the study of Casas-Alvero Conjecture. 2024. ⟨hal-04158876v3⟩
57 Consultations
32 Téléchargements

Altmetric

Partager

More