Multiscale analyses for the Shallow Water equations - CaSciModOT (calcul scientifique et modelisation Orleans-Tours)
Chapitre D'ouvrage Année : 2011

Multiscale analyses for the Shallow Water equations

Didier Bresch
Rupert Klein
  • Fonction : Auteur
  • PersonId : 865651

Résumé

This paper explores several asymptotic limit regimes for shallow water flows over multiscale topography. Depending on the length and time scales considered and on the characteristic water depth and height of topography, a variety of mathematically quite different asymptotic limit systems emerges. Specifically, we recover the classical ``lake equations'' for balanced flow without gravity waves in the single time, single space scale limit (Greenspan, Cambridge Univ. Press, (1968)), discuss a weakly nonlinear and a strongly nonlinear multi-scale version of these wave-free equations involving short-range topography, and we re-derive the equations for long-wave shallow water waves passing over short-range topography by Le Maître et al., JCP (2001).
Fichier principal
Vignette du fichier
BreschKleinLucas.pdf (188.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00442344 , version 1 (20-12-2009)

Identifiants

Citer

Didier Bresch, Rupert Klein, Carine Lucas. Multiscale analyses for the Shallow Water equations. Computational Science and High Performance Computing IV, 115, pp.149-164, 2011, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, ⟨10.1007/978-3-642-17770-5_12⟩. ⟨hal-00442344⟩
236 Consultations
334 Téléchargements

Altmetric

Partager

More